

My Progress and Thoughts on Jet Simulations

Megan Connors
GSU/RBRC
HCAL Fest III
December 15, 2015

What I've managed to do

- Run Fun4All_G4_sPHENIX.C
- Set true: do_jet_reco & do_jet_eval
- Anti-kt R=0.3 jets according to G4_Jets.C
- Reco and Truth ntuples in g4jet_eval.root
- Plot: Response Matrix, Jet Energy Resolution (JER) & Jet Energy Scale (JES)

Step 1: JES & JER

• 50 GeV pi- 1k events

JER = 10.5% Jet energy shift from truth = 16.7%

Previous Particle Flow Results

- My results show reasonable agreement
- Current status of particle flow method?
 - Appears to be functioning in updated code but should be tested

Hanks et al PRC 86 (2012) 024908

PYTHIA & HIJING in Geant4

Changes to Response

- Gluon vs quark response
- Study should be repeated with newest framework
- Hcal Tilt angles?
- Any other detector tunes?

Jet Simulations Requirements

Tracking performance criteria

We have recently decided to adopt a set of criteria for tracking performance that can be applied to all combinations of our 4 tracking detector options - in progress

Physics Channel	Physics requirements	Momentum resolution	DCA resolution	eID h rejection	Single track off.	Fake track rate
Y-> ee	$\Delta M = 100 \text{ MeV}$ $A\epsilon = 50\% \text{ of geom.}$ acceptance	ΔpT < 1.2% (1-8 GeV/c)	N/A	> 90	90% (>2 GeV/c)?	x% (before CEMC) y% (after CEMC)
D'(z)/D(z)	$\sigma^h/\sigma^{jet} = x\%$ z = 0-0.8	ΔpT < 4% (1-40 GeV/c)	N/A	N/A ?	x% high pT y% low pT	x% within jet y% overall
b-jet ID via track counting	35% purity at 45% efficiency	?	< 70 μm	N/A	x% (set by 35% @ 45% goal)	y% (set by 35% @ 45% goal)
b-jet ID via secondary vertex	35% purity at 45% efficiency	?	< 70 μm/(2-3?)	N/A	90% (>2 GeV/c)?	y% overall
γ+h jet + h	h рт below jet reco threshold	?	N/A	N/A	90% (>2 GeV/c)?	y% overall pT dependent
Particle flow jets	?	?	N/A	N/A	90% (>2 GeV/c)?	y% overall pT dependent

- List shown by Tony at Collaboration Meeting
- Hcal/Emcal equivalent?
- Calo jets

21

https://indico.bnl.gov/getFile.py/access?contribId=20&sessionId=7&resId=0&materialId=slides&confId=1376

Discussion

